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Abstract: Obesity is a growing public health problem, which has now been considered as 

a pandemic non-communicable disease. However, the efficacy of several approaches for 

weight loss is limited and variable. Thus, alternative anti-obesity treatments are urgently 

warranted, which should be effective, safe and widely available. Active compounds 

isolated from herbs are similar with the practice of Traditional Chinese Medicine, which 

has a holistic approach that can targets to several organs and tissues in the whole body. 

Capsaicin, a major active compound from chili peppers, has been clearly demonstrated 

for its numerous beneficial roles in health. In this review, we will focus on the a less 

highlighted aspect, in particular how dietary chili peppers and capsaicin consumption 

reduce body weight and its potential mechanisms of its anti-obesity effects. With the 

widespread pandemic of overweight and obesity, the development of more strategies for 

the treatment of obesity is urgent. Therefore, a better understanding of the role and 

mechanism of dietary capsaicin consumption and metabolic health can provide critical 

implications for the early prevention and treatment of obesity. 
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1. Introduction 

The epidemic of obesity is a growing public health problem. The incidence of obesity has 

more than doubled since 1980, and has now reached worldwide epidemic status [1]. In 

2014, the World Health Organization (WHO) estimated that 39% of the human adult 

population with 1.9 billion people were affected with overweight (body mass index (BMI) 

25 kg/m2), and that obesity (BMI 30 kg/m2) affected about 13% with 600 million 

people [2, 3]. Obesity is a serious risk factor as it is associated with chronic inflammation 

and metabolic syndrome [4], a cluster of morbidities that includes hypertension, 

hyperlipidemia and type 2 diabetes mellitus (T2DM) [5]. It can increase the risks of 

developing serious health problems, such as cardiovascular diseases, chronic kidney 

disease and stroke [6, 7]. Moreover, obese patients are more prone to contract several 

forms of cancer with reduced chances of survival [8]. Of particular concern is the 

incidence of overweight and obesity in children, with an estimated one-third of children 

and adolescents affected in the United States and over 41 million children are overweight 

before reaching puberty [2]. As such, obesity and its related diseases yield enormous tolls 

at individual, public health and economic levels. In addition, genome-wide association 

studies (GWAS) have revealed compelling genetic signals influencing obesity risk and 

genetic polymorphism plays a major role in determining obesity [9]. An updated 

randomized controlled trial indicated that greater body weight and waist circumference 

reductions in risk carriers than in nonrisk carriers of the fat-mass and obesity-associated 

(FTO) gene across different levels of personalized nutrition [10]. These data signify that 

the interventions should be personalized and varies with each individual [11]. Thus, the 

development of novel and personalized strategies for the early prevention and treatment 

of overweight and obesity is warrant.  

2. Limitations in anti-obesity approaches 

It has clearly established that weight loss will significantly diminish the complications of 



obesity [12]. Emerging human epidemiology studies indicated that reducing body weight, 

with weight loss of at least 5%, has long-term benefits on metabolic health and reduces 

the risks of developing insulin resistance, T2DM and cardiovascular diseases [13]. 

However, weight loss is difficult and the obese individuals are struggling to achieve it 

and the efficacy of several approaches for weight loss is limited and variable [14, 15]. 

Firstly, it is widely accepted that a combination of physical exercise and low calorie diet 

is the best approach to prevent and treat obesity. However, this strategy is difficult to 

implement and its compliance is poor. Gupta et al. aimed to explored treatment 

satisfaction associated with different weight loss methods among patients with obesity. It 

showed that using self-modification weight loss techniques, such as, diet, exercise and 

weight loss supplements has lowest treatment satisfaction, compared with gastric bypass 

and gastric banding, and prescription medication [16]. In addition, physical exercise and 

diet intervention also yield enormous tolls at economic level. It reported that retail sales 

of weight-loss supplements were estimated to be more than $1.3 billion in 2001 in US 

[17]. Thus, cheap, easily available therapies and supplements are urgently needed. The 

second approach is pharmaceutical drugs, such as Orlistat, a potent and specific inhibitor 

of intestinal lipases. It can reduce body weight with an average weight loss of 3% during 

one year period [13]. However, its efficacy is variable and it can lead to gastrointestinal 

adverse effects, liver failure and acute kidney injury [18]. Other anti-obesity drugs, such 

as rimonabant, fenfluraminea and sibutramine, have been withdrawn from the market due 

to severe adverse effects, including increased cardiovascular risks, mood disorders and 

even suicidal susceptibility [14]. Thirdly, anti-diabetic agents, such as, glucagon-like 

peptide 1 (GLP-1) analogue, liraglutide has been shown its potential anti-obesity efficacy 

[19]. But it needs to be injected subcutaneously daily. Moreover, the weight loss is 

limited and it can increase the risk of pancreatitis [20]. Compared with aforementioned 

anti-obesity drugs, bariatric surgery such as Roux-en-Y gastric bypass or sleeve 

gastrectomy is more effective. However, it is physically invasive, relatively expensive 



and its long-term effect is unclear [21]. Therefore, alternative anti-obesity treatments are 

urgently warranted, which should be effective, safe and widely available.  

3. An overview of chili peppers and capsaicin 

Chili pepper is generally used as a flavoring spice and is prominent in diets of various 

communities and cultures worldwide since 7000BC, with a long history of flavoring, 

coloring, preserving food as well as medication [26]. In chili pepper, more than 200 

active constituents have been identified and some of its active constituents play multiple 

roles in the whole body [27]. Capsaicin, as a major active compound from chili pepper, 

has been established for its numerous beneficial roles in the human organism, including 

the treatment of pain inflammation, rheumatoid arthritis [28] and vasomotor rhinitis [29] 

(Figure 1). Furthermore, capsaicin has proven an effective anti-cancer agent. Several 

preclinical studies showed that capsaicin could suppress various human neoplasia by 

generating reactive oxygen species and increasing apoptosis [30, 31]. Finally, capsaicin 

demonstrated significant antioxidant properties and it was postulated that this compound 

has important implications in the prevention or treatment of neurodegenerative diseases 

such as Alzheimer’s disease [32]. In addition to capsaicin as anti-obesity compounds, 

other types of natural products also have shown to be considered as anti-obesity 

compounds. Celastrol (from roots of the thunder god vine) can reduce appetite and food 

intake in mice that are fed a high-fat diet [33]. Stilbenoid resveratrol (from grapes and red 

wine), genistein (an isoflavone from soy), glycyrrhizin (from liquorice), quercetin, 

ethanolic extract (from ginseng roots) and green tea extract (including camellia sinensis, 

catechin, caffeine, and epigallocatechin gallate), play a role in adipogenesis inhibition, 

thus may have anti-obesity potency [15]. In this review, we will focuses on the a less 

highlighted aspect, in particular how dietary chili peppers and capsaicin consumption 

reduce body weight and its potential mechanisms of its anti-obesity effects. Figure 1 

shows the molecular structure of capsaicin and isolated from chili peppers. 



4. Clinical studies of the weight-loss effects of capsaicin 

4.1 Weight-loss effects of capsaicin on lipid oxidation and energy expenditure 

Epidemiological data revealed that the consumption of foods containing capsaicin was 

associated with a lower prevalence of obesity [34]. In one double-blind, randomized, 

placebo controlled trial, it indicated that treatment of overweight or obese subjects with 6 

mg/d capsinoid for 12 weeks was associated with abdominal fat loss measured by dual 

energy X-ray absorptiometry. Body weight was decreased as 0.9 and 0.5 kg in the 

capsinoid and placebo groups, respectively. Moreover, none of the patients developed any 

adverse events [35] (Table 1). Lejeune et al. aimed to investigate whether capsaicin 

assists weight maintenance by limiting weight regain after weight loss of 5% to 10%. The 

results showed that capsaicin treatment caused sustained fat oxidation during weight 

maintenance compared with placebo [36] (Table 1). Increase the oxygen consumption 

(VO2) and body temperature, reflecting increased energy expenditure, thus play critical 

role in weight loss. Fat oxidation was reported to be sustained together with elevation of 

the resting energy expenditure and enhanced fat oxidation may contribute to increased 

energy expenditure. In another randomized double-blind study, it indicated that subjects 

between 30 and 65-year old with a BMI >23 kg/m2 treated with capsinoid (10 mg/kg per 

day) for 4 weeks safely and body weight tended to decrease during the 2 to 4 week period, 

with increased VO2, resting energy expenditure, fat oxidation significantly [37] (Table 1). 

Enhanced lipid oxidation and increased energy expenditure are potentially beneficial for 

weight management [38]. 

4.2 Weight-loss effects of capsaicin on appetite and brown adipose tissue 

Dietary red pepper can suppress energy intake and modify macronutrient intake through 

appetite and satiety regulation [39]. One prospective study aimed to investigate the 

effects of capsaicin on feeding behavior and energy intake. It indicated that the addition 

of red pepper to the breakfast significantly decreased protein and fat intakes at lunch time 



and the addition of red pepper to the appetizer significantly reduced the cumulative ad 

libitum energy and carbohydrate intakes during the rest of the lunch. These effects might 

be related to an increase in sympathetic nervous system activity [40] (Table 1). Brown 

adipose tissue (BAT) is known to play a critical role in cold-induced non-shivering 

thermogenesis to maintain body temperature and it is expected to be a therapeutic target 

for obesity and related metabolic disorders in humans [41]. It showed Chili pepper affects 

energy expenditure by triggering the BAT in the same way as low temperature does, 

leading to increased energy expenditure via non-shivering thermogenesis [42]. One recent 

clinical study showed that 9 mg of capsinoid for 8 weeks could increase BAT activity and 

increase thermogenesis in healthy subjects [43] (Table 1). The results suggest dietary 

capsaicin consumption could have a beneficial effect for weight management, by 

reducing energy intake and activation of brown adipose tissue activity. The summary of 

the clinical studies about the weight-loss effects of capsaicin was shown Table 1.  

5. Pre-clinical studies about anti-obesity effects of capsaicin and its potential 

mechanisms 

5.1 Capsaicin and TRPV1 activation 

Numerous epidemiology studies and animal studies indicated that capsaicin, as a transient 

receptor potential vanilloid 1 (TRPV1) agonist, it may represent a potential strategy to 

treat obesity. Although it is well accepted much of the effect is caused by stimulation of 

the TRPV1 receptor, the mechanism of action is not presently fully understood. 

Increasing evidence indicates that TRPV1 plays a critical role in the regulation of 

metabolic health for the whole body, including body weight, glucose and lipid 

metabolism, and cardiovascular system [44, 45]. TRPV1 was deemed as a potential target 

for the prevention of obesity due to its effect on energy metabolism and balance [46, 47]. 

Activation of TRPV1 by capsaicin can attenuate abnormal glucose homeostasis by 

stimulating insulin secretion and increasing glucagon-like peptide-1 (GLP-1) levels [48, 



49] (Table 2). Furthermore, capsaicin also plays its role in a receptor-independent manner. 

It reported that capsaicin was associated with nuclear factor- kappa B (NF- B) 

inactivation and peroxisome proliferator activated receptor-  (PPAR ) activation, and 

then it could modulate adipocyte function of adipose tissues in obese-mouse and 

suppressed the inflammatory responses of adipose tissue macrophages, which is 

independent on TRPV1 [50]. Additionally, TRPV1 can play a critical role in cell 

proliferation and cancer. It showed that TRPV1 implicated as a regulator of growth factor 

signaling in the intestinal epithelium, which could subsequent suppress intestinal 

tumorgenesis [51].  

The potential mechanisms underlying the anti-obesity effects of capsaicin include: (1) 

increase lipid oxidation and inhibit adipogenesis; (2) activate brown adipose tissue (BAT) 

activity and induce thermogenesis; (3) suppress appetite and increase satiety regulated by 

neuronal circuits in the hypothalamus; (4) modulate the function of gastrointestinal tract 

and gut microbiome. The molecular mechanisms of the anti-obesity effects of capsaicin 

were summarized in Figure 2. In addition, we further collected most pre-clinical studies, 

including in-vitro studies and rodent experiments about the anti-obesity effects of 

capsaicin (shown in Table 2). 

5.2 Capsaicin and its role in adipogenesis 

Adipogenesis is the critical and original process of fatty adipose accumulation. It 

suggested that decreased preadipocyte differentiation, proliferation and lipogenesis have 

the potential to reduce obesity. Hsu et al. demonstrated that capsaicin inhibited the 

expression of PPAR , CCAAT-enhancer-binding protein-  (C/EBP- ) and leptin, but 

induced up-regulation of adiponectin at the protein level. Thus, it efficiently induced 

apoptosis and inhibits adipogenesis in 3T3-L1 preadipocytes and adipocytes in vitro [52] 

(Table 2, Figure 2). Zhang et al. found that capsaicin treatment prevented adipogenesis of 

3T3-L1-preadipocytes in vitro, with increased intracellular calcium [53] (Figure 2). Male 



C57BL/6 obese mice fed a high-fat diet for 10 weeks received a supplement of 0.015% 

capsaicin showed decreased fasting glucose, insulin, leptin concentrations, and markedly 

improved glucose intolerance in obese mice, accompanied with decreased TRPV-1 

expression in adipose tissue, increased adiponectin expression in the adipose tissue and 

increased peroxisome proliferator activated receptor  (PPAR ) and PPAR  coactivator 

1-  (PGC-1 ) expression in the liver [54] (Table 2, Figure 2). Ohnuki et al. demonstrated 

that mice treated with 10 mg/kg body weight capsaicin could markedly suppressed body 

fat accumulation and promoted energy metabolism [55] (Table 2). Hence, these studies 

supported that capsaicin could decrease adipogenensis and regulate genes function related 

with lipid metabolism, and then it can has the potential to lose weight.  

5.3 Capsaicin and its role in brown adipose tissue

BAT is the main site of adaptive thermogenesis and experimental studies have associated 

BAT activity with protection against obesity and metabolic diseases [56]. A review 

illustrated that the activity of BAT can be activated and recruited not only by cold 

exposure but also by various food ingredients, such as capsaicin in chili pepper [57] 

(Table 2). Capsinoids supplementation with exercise in C57BL/6J mice additively 

decreased body weight gain and fat accumulation, and increased whole body energy 

expenditure compared with exercise alone. The underlying mechanisms may be 

associated with increased energy expenditure, lipolysis activation in BAT and increased 

cyclic adenosine monophosphate (cAMP) levels and protein kinase A (PKA) activity in 

BAT [58] (Table 2, Figure 2). One up-to-date rodent experiment showed that capsaicin 

could counter the detrimental effects of high-fat diet, including glucose intolerance, 

hypercholesterolemia and suppressed activity in BAT. These effects were mainly by 

increasing the expression of metabolically important thermogenic genes, including 

uncoupling protein 1 (UCP-1), bone morphogenetic protein-8b (BMP8b), sirtuin-1 

(SIRT-1), PGC-1  and PR domain containing zinc finger protein 16 (PRDM-16) in BAT. 

Furthermore, capsaicin supplementation, post high-fat diet, promoted weight loss and 



enhanced the respiratory exchange ratio. All these data suggested that capsaicin is a novel 

strategy to counter diet-induced obesity by enhancing metabolism and energy expenditure 

[59] (Table 2, Figure 2). Baskaran et al. showed that activation of TRPV1 channels by 

dietary capsaicin triggered browning of adipose tissue to counteract obesity [60] (Table 2). 

Collectively, these observations provide evidence that capsaicin can activate and recruit 

BAT, which would be a promising strategy to counter obesity. 

5.4 Capsaicin and its role in appetite and satiety 

Energy balance requires an ability of the brain to detect the status of energy stores and 

match energy intake with expenditure, and energy homeostasis is mainly controlled by 

neuronal circuits in the hypothalamus [61]. Hypothalamic endoplasmic reticulum stress 

occurs in individuals with obesity and is thought to induce low levels of leptin receptor 

signaling and play a central role in development of leptin resistance [62]. The adipose 

tissue-derived hormone leptin acts via its receptor in the brain to regulate energy balance 

and neuroendocrine function. Leptin resistance is a pathological condition, which means 

the lack of appetite reduction in response to leptin and the body fails to adequately 

respond to it [63]. Lee et al. found that TRPV1 had a major role in regulating glucose 

metabolism and hypothalamic leptin's effects in obesity, with hypothalamic signal 

transducer and activator of transcription-3 (STAT-3) activity blunted in the TRPV1 knock 

out mice [64] (Figure 2). Addition of dietary capsaicin has been shown to increase satiety 

and it indicated that capsaicin increased sensation of fullness in energy balance, and 

decreased desire to eat after dinner in negative energy balance [65]. Although the studies 

about capsaicin and its role in appetite is limited, it inspired us that neuronal circuits in 

the hypothalamus may be a pivotal target of capsaicin. 

5.5 Capsaicin and its role in gastrointestinal tract and gut microbiome 

Capsaicin is passively absorbed in the stomach with greater than 80% efficiency and 

upper portion of the small intestine [66]. Thus, it may activate local TRPV1 channels in 



gastrointestinal tract to initiate a series of physiological effects. Dietary capsaicin 

consumption triggered the intestinal mucosal afferent nerves and increased intestinal 

blood flow [67]. Acute single administration of 640 umol/L capsaicin into the duodenal 

lumen in anesthetized rats significantly increases superior mesenteric artery blood flow 

[68] (Table 2). In addition, it showed that dietary capsaicin ameliorated abnormal glucose 

homeostasis and increased GLP-1 levels in the plasma and ileum through the activation 

of TRPV1-mediated GLP-1 secretion in the intestinal cells and tissues [49] (Table 2, 

Figure 2). Recent study demonstrated that anti-obesity effect of capsaicin in mice fed 

with high-fat diet was associated with an increase in population of the gut bacterium 

Akkermansia muciniphila. Further studies found that capsaicin directly up-regulated the 

expression of Mucin 2 gene Muc2 and antimicrobial protein gene regenerating 

islet-derived protein 3 gamma (Reg3g) in the intestine[69] (Table 2, Figure 2). These data 

suggested that the anti-obesity effect of capsaicin is associated with a modest modulation 

of the function in gastrointestinal tract and gut microbiome. 

6. Conclusion 

In summary, capsaicin plays a critical role in human and has multiple benefits for 

metabolic health, especially for weight loss in obese individuals. It is well accepted that 

the potential application of active compounds isolated from herbs are similar with the 

practice of traditional Chinese medicine, which has a holistic approach that can targets to 

different organs and tissues in the whole body. More importantly, no adverse effects with 

capsaicin were observed in most studies. Thus, chili peppers and capsaicin are safely and 

easily applicable to our daily life. Considering that chili peppers have been a vital part of 

culinary cultures worldwide and have a long history of use for flavoring, so it is more 

feasible to be utilized to treat overweight and obesity, compare with medications or other 

interventions with certain side effects. Dietary chili peppers supplementation or to be 

food additives, with ideal dosage may be tentative methods for capsaicin to play its 

protective roles in metabolic health. With the widespread pandemic of overweight and 



obesity, the development of more strategies for the treatment of obesity is urgent. 

Therefore, a better understanding of the role and mechanism of dietary capsaicin 

consumption and metabolic health can provide critical implications for the early 

prevention and treatment of obesity. 
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Figure Legends 

Figure 1. The molecular structure of capsaicin and isolated from chili peppers. 

Figure 2. Molecular mechanisms of the anti-obesity effects of capsaicin. A. Capsaicin 

can inhibit adipogenesis in preadipocyte and adipocyte by up-regulating the expression of 

PPAR  and UCP-1. Thus, it will increase stimulate adiponectin secretion and increase 

body fat accumulation; B. Capsaicin can activate BAT activity, accompanied by increased 

expression of UCP-1 and PGC1-; C. Capsaicin can suppress appetite, increase satiety and 

ameliorate insulin resistance; D. Capsaicin can modulate its function in gastrointestinal 

tract and gut microbiome, including stimulate GLP-1 secretion and increase in population 

of the gut bacterium Akkermansia muciniphila. BAT: brown adipose tissue; GLP-1: 

glucagon-like peptide-1; Muc2: mucin 2 gene; PPAR : peroxisome proliferator activated 

receptor ; PPAR : peroxisome proliferator activated receptor ; PGC1- : PPAR  



coactivator 1- ; Reg3g: regenerating islet-derived protein 3 gamma; STAT-3: signal 

transducer and activator of transcription-3; TRPV1: transient receptor potential vanilloid 

1; UCP-1: uncoupling protein 1; WAT: white adipose tissue.  
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